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Summary

To complement the effectiveness of ceramic materials and their applicability to
turbine engine applications, a parametric study using the finite element method was
carried out. This study conducted thorough analyses of a thermal-barrier-coated silicon
nitride (Si3N4) plate specimen with cooling channels, where its thermal conductivity was
varied in an attempt to minimize the thermal stresses and reach an optimal state of stress.
The thermal stress profile was generated for specimens with circular and square cooling
channels. Lower stresses were reported for a higher magnitude of thermal conductivity
and in particular for the circular cooling channel arrangement. Contour plots for the
stresses and the temperature are presented and results obtained are discussed.

Introduction

Lightweight, strong, tough high-temperature materials are required to complement
efficiency improvements for next-generation gas turbine engines that can operate with
minimum cooling. Because of their low density, high-temperature strength, and thermal
conductivity, ceramic matrix composites are being investigated as potential materials for
replacing nickel-base superalloys currently used for hot-section engine components.
Ceramic structures can withstand higher operating temperatures and harsh combustion
environments. In addition, their low densities relative to metals help to reduce component
mass (refs. 1 and 2) and hence the engine weight and ultimately the fuel consumption.

1NASA Resident Research Associate at Glenn Research Center, Telephone: 216−433−6729, Fax: 216−977−7150,
E-mail: smaziz@grc.nasa.gov.

2Telephone: 216−433−5513, Fax: 216−433−5544, E-mail: bhatt@grc.nasa.gov.
3Telephone: 937−376−6309, Fax: 937−376−6679, E-mail: mgirgis@csu.ces.edu.
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The general objectives of this research are to develop the manufacturing technology,
the thermal and environmental barrier coating (TBC/EBC) system, and the analytical
modeling capability to predict the thermomechanical stresses for testing minimally
cooled silicon nitride burner rig specimens under simulated engine conditions. These
stresses, resulting from the high temperatures in turbine engine environments, may affect
the durability of engine components. To minimize the thermal stress, this report analyzes
the effects of thermal conductivity (which varies with the temperature changes in these
environments) and cooling channel geometry on the temperature distribution for coated
silicon nitride in a burner rig environment.

Analytical Approach

Two-dimensional finite element analyses were performed in a parametric study in
which heat transfer and stress analyses were conducted under steady-state conditions to
demonstrate the feasibility of using cooled Si3N4 parts for turbine engine applications.
The calculations were made under linear elastic conditions where the behavior of the
material was defined by two material constants, Young’s modulus and Poisson’s ratio.
The geometry of a silicon nitride plate with cooling channels used for the finite element
analysis is shown in figure 1. Plate-shaped specimens were used in these analyses to
simulate conditions and environmental behavior typically experienced by vanes in turbine
engines. The test specimens consist of a square silicon nitride substrate with four coating
layers arranged in the following order: a top layer of mullite, a second layer of combined
mullite and 20 wt% barium strontium aluminosilicate (BSAS), a third layer of BSAS,
and a fourth layer of zirconia. The first three layers each have an equal thickness of
0.0765 mm, and the zirconia layer has a thickness of 0.0254 mm. Figure 1 shows the
test specimen with eight 2.03-mm-diameter cylindrical cooling channels spaced 1.02 mm
apart. The specimen with the square cooling channels has edge dimensions equal to the
diameter of the cylindrical channels in this specimen.

The analyses embraced a thermal model that closely simulated impingement heating
applied on the plate by a burner rig flame generated during previous experiments (Dennis
Fox, 2001, NASA Glenn Research Center, experimental work). The hot flame was
pointed symmetrically at the center region with the gas temperature being linearly
dissipated over the rest of the plate. Because of symmetry, only half the plate was
modeled. The steady-state temperature distributions were generated. All the finite
element calculations were conducted with ANSYS 5.7 code (ref. 3).

Finite Element Analysis

Mesh Generation

Stress and steady-state heat transfer analyses were conducted to simulate a burner rig
experimental setup that included internal cooling by air. The finite element model was
generated with MSC/PATRAN graphics (ref. 4). Figures 2 and 3 represent the two-
dimensional finite element models for the square and the circular channel test specimen
configurations, respectively. The models consist of 10 216 eight-node quad elements
and 31 475 nodes for the circular-channeled specimens and 9740 eight-node quad
elements and 30 145 nodes for the square-channeled specimens. The specimen was
constrained along the line of symmetry by restraining all the nodes from moving along
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the X-direction, and another node was constrained along the Y-direction to suppress rigid
body motion (see fig. 3).

Heat Transfer Analysis

The thermal boundary conditions applied were fundamental in evaluating the thermal
profile predicted by the analyses. Several assumptions were made to model the heat
transfer phenomena experienced by the test specimen. Furthermore, convective boundary
conditions were applied, and the corresponding heat transfer coefficients were obtained
from reference 5. Convective flame impingement was imposed over the top of the plate,
while convective cooling was applied to the bottom of the plate and inside the cooling
channels, as shown in figure 2. Also note in figure 2 that the convective heat transfer
coefficient was linearly varied from the center to the edge, simulating a decaying flame.
At the center, impingement heating conditions were imposed, and the forced-convection
state between the flame and the plate surface had a convective coefficient value of
883 W/m2 °C associated with a gas temperature of 1982 °C. This value of heat transfer
coefficient corresponds well with values of heat transfer coefficients for superheated
steam or air under forced convection (ref. 5), which are highly representative of data used
for an impingement heating environment. At the edge, a convective heat transfer
coefficient of 6 W/m2 °C was applied, representing the free-convection state considered
in the analysis. The gas temperature was linearly tapered off across the plate from a high
of 1982 °C until it reached a low of 700 °C.

The cooling channels and the specimen bottom were modeled with a convective heat
transfer coefficient of 114 W/m2 °C, a typical value for water cooling in a forced-
convection state (ref. 5) and a gas temperature of 700 °C. Air is the cooling medium
assumed in these analyses.

A symmetry boundary condition was imposed at the specimen midregion because
only half the specimen was considered for the analyses. All the coating layers were
included in the analyses; layers of elements representing the coatings in the order
described in figure 1 were generated. More details pertaining to the thermal modeling
can be found in reference 1. The material properties for the coatings and the silicon
nitride are listed in table I.

Discussion of Results

Contour plots showing the silicon nitride thermal and structural response are shown
in figures 4 to 7. The temperature and the axial stress as a function of the thermal
conductivity for the circular and square cooling channel configurations are also shown
in figures 8 and 9. The temperature and the stress results presented were generated under
cooling conditions.

Figures 4 and 5 represent the contour plots of the temperature distribution at a
silicon nitride thermal conductivity of 100 W/m °C. They indicate that the maximum
temperature is at the center section of the plate as expected. Additionally, the influence
of the cooling channel configuration is clearly exhibited by the temperature distribution
between the two channel layouts. A hotter region is recognized for the square
configuration. Figures 4 and 5 show the silicon nitride temperature predicted by the
analysis. Furthermore, temperature effects of the material properties reported in Table I
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were all incorporated into the analyses. Such implementation has enabled accounting
for all the thermal conductivity variations due to material properties changes with
temperature. Figures 6 and 7 illustrate the axial stresses as a result of the thermal loading
conditions applied. Similar stress distribution trends for both cooling channel shapes
are clearly indicated. However, the stresses were lower, close to 50 percent, for the
circular cooling channel plate compared with that of the square channels. High stress
concentrations are seen at the square corners and specifically near the flame area (see
fig. 6). The plate with the circular cooling channels experienced high stresses at the top
section of the channels along the 90º angle (see fig. 7); however, no stress concentrations
were noted. Thus, a circular cooling channel configuration seems to be more suitable for
intended turbine engine applications.

The data presented in figures 8 and 9 show the effects of both the shape of the
cooling channels and the thermal conductivity simultaneously. For instance, figure 8
illustrates the variation of the temperature under cooling conditions as the thermal
conductivity of the silicon nitride is increased from 2 to 100 W/m °C. This variation
range was randomly chosen in an attempt to evaluate a broader spectrum of material
conductivity data. It is obvious that the temperature is decreased as the thermal
conductivity increases. Note also that the specimens with the square and the circular
cooling channels were at nearly the same temperature over the conductivity range
considered. This is attributed to the similarity in the boundary conditions applied.

In figure 9 the maximum axial stress of the silicon nitride as a function of the thermal
conductivity decreases as the thermal conductivity increases. Furthermore, the reduction
of the stresses relative to the change in the thermal conductivity magnitude as it varied
from 2 to 100 W/m °C is about 18 percent. This leads to the conclusion that at higher
thermal conductivity the stresses become lower. However, the extent to which this
decrease in stress, resulting from the thermal conductivity variation, affects the material’s
durability may be difficult to predict. Other factors like the coating materials and the
thermal boundary conditions may have contributed to the outcome of these analyses and
affected the conductivity influence of the ceramic on the stress response.

Conclusions

A parametric study using the finite element method was conducted to investigate the
effects of varying the thermal conductivity and the cooling channel geometry on the
thermomechanical response of a prototype coated silicon nitride (Si3N4) cooling-plate
panel specimen. The analyses showed a decrease of about 18 percent in the stresses of
the silicon nitride when the thermal conductivity was increased from 2 to 100 W/m °C.
The plate specimen with circular cooling channels showed no stress concentration; in
comparison, the specimen with the square cooling channels experienced stress risers
at the channel corners. Layers of coating, as well as other factors such as boundary
conditions, may have affected the changes reported as resulting from thermal
conductivity variations. The current study offers a preliminary baseline assessment of
the effects of the thermal conductivity on the thermomechanical response of the silicon
nitride; however, more work is warranted under more realistic boundary conditions to
reach a more conclusive statement relative to gains and benefits achieved with respect
to durability. Efforts are in progress to study the effects of other key parameters such as
material surface roughness, the thermal and environmental barrier coating (TBC/EBC)
system, and the coolant pressure differential as expressed with more representative
thermal boundary conditions.
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aRef. 6.
bBSAS is barium strontium aluminosilicate.
cRef. 7.
dRef. 8.

Porous zirconiad

1386 0.0025 .25 28.75 .50
25 0.0025 .25 28.75 2.0

BSAS-mullite
mixturea 1386 120 ----- 18.71 .24

25 120 ----- 18.71 2.0

Mullitec

1386 145 .20 13.46 3.87
25 145 .20 13.46 5.86

TABLE I.MECHANICAL AND THERMAL PROPERTIES OF MATERIALS
Material Temperature,

°C
Elastic

modulus,
GPa

Poisson’s
ratio

Coefficient of thermal
expansion,

10−6/°C

Thermal
conductivity,

W/m °C

BSASa, b

1386 95 ----- 23.96 .50
25 95 ----- 23.96 2.0

25 300 0.22 8.380 30.0Silicon nitridea

1386 250 .19 8.380 12.0
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Figure 1.—Monolithic silicon nitride (Si3N4) circular-channeled cooling panel cross section. BSAS
   is barium strontium aluminosilicate.
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Figure 3.—Circular configuration finite element model (10 216 eight-node quad
   elements, 31 475 nodes) and boundary conditions applied.
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Figure 2.—Two-dimensional finite element model of square configuration (9740 eight-node quad
   elements, 30 145 nodes) and thermal boundary conditions showing applied gas temperature,
   T (°C) and heat transfer coefficients, h (W/m2 °C).
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Figure 4.—Temperature distribution at thermal conductivity of 100 W/m °C for cooling with
   square channels.

Figure 5.—Temperature distribution at thermal conductivity of 100 W/m °C for cooling with
   circular channels.
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Figure 6.—Axial stress distribution at thermal conductivity of 100 W/m °C for cooling with
   square channels.

Figure 7.—Axial stress distribution at thermal conductivity of 100 W/m °C for cooling with
   circular channels.
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Figure 9.—Axial stress for silicon nitride in X-direction as function
   of thermal conductivity for two different cooling channel con-
   figurations.
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Figure 8.—Temperature of silicon nitride as function of thermal
   conductivity for two different cooling channel configurations.
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